МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «МГТУ»)

Методические указания для самостоятельной работы

при изучении дисциплины (модуля)

Дисциплина	<u>Б1.В.ДВ.02.02</u> Основы теории колебаний				
	код и наименование дисциплины				
Специальность	25.05.03 Техническая эксплуатация транспортного радиооборудования				
	код и наименование специальности				
Специализация	Техническая эксплуатация и ремонт радиооборудования промыслового				
	флота				
	наименование направленности (профиля) /специализации образовательной программы				
Разработчик	канд.физмат. наук, доцент, доцент Волков М.А.				
	уч.степень, уч. звание, должность, ФИО				

Мурманск 2019 Составитель – Волков Михаил Анатольевич, кандидат технических наук, доцент кафедры радиоэлектронных систем и транспортного радиооборудования Мурманского государственного технического университета

Методические указания рассмотрены и одобрены кафедрой радиоэлектронных систем и транспортного радиооборудования 19 ноября 2019 г., протокол $N \ge 8$.

1.Цель дисциплины:

- формирование компетенций в области профессиональной деятельности в соответствии с квалификационной характеристикой 25.05.03 «Техническая эксплуатация транспортного радиооборудования»

2.Задачи дисциплины:

- ознакомить студентов с особенностями собственных, вынужденных, параметрических и автоколебаний в нелинейных колебательных системах, а также с методами анализа этих систем

Содержание основных разделов дисциплины:

- Глава 1. Собственные колебания в линейных и нелинейных системах с одной степенью свободы
- Глава 2. Элементы теории автоколебаний
- Глава 3. Вынужденные колебания в нелинейных системах с одной степенью свободы
- Глава 4. Параметрические колебания в нелинейных системах с одной степенью свободны
- Глава 5. Колебания в линейной системе с двумя степенями свободы

4. Планируемые результаты обучения в рамках данной дисциплины

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с $\Phi\Gamma$ OC BO по направлению подготовки/специальности «Техническая эксплуатация транспортного радиооборудования».

Компетенции ФГОС

№ п/п	Код компе-	Компоненты компетенции, степень их реализации	Результаты обучения				
11/11	тенции	етепень их решинации					
1	ПК-25	Компоненты компетенции полностью соотносятся с содержанием дисциплины	знать: - современные методы и средства получения информации об ионосфере; уметь: ориентироваться в многообразии современных технических средств получения информации о полярной ионосфере; владеть: навыками компьютерного моделирования физических процессов в ионосфере.				
2	ПК-2	Компоненты компетенции полностью соотносятся с содержанием дисциплины, и компетенция реализуется в части «способностью генерирования идей, решения задач по созданию теоретических моделей, позволяющих прогнозировать изменение свойств объектов профессиональной деятельности»	знать: -основы физики ионосферы как среды распространения информационнонавигационных радиосигналов; - элементы гелио-магнитосферноионосферных связей; уметь: - определять самостоятельно особенности ионосферы в различных гелиогеофизических условиях; владеть: - навыками построения теоретических моделей для описания процессов в ионосфере				
3	ПК-3	Компоненты компетенции полностью соотносятся с со-	знать: - влияние ионосферы на распространение				
		держанием дисциплины, и	информационно-навигационных радиосиг-				

	компетенция реализуется в	налов;			
	части «способностью выпол-	уметь:			
	нять действия, связанные с	- решать вопросы прохождения радио-			
	технической эксплуатацией	навигационных сигналов в условиях воз-			
	судовых средств радиосвязи	мущения в ионосфере;			
	и радионавигации»	владеть:			
		- навыками технической эксплуатацией су-			
		довых средств радиосвязи и радионавига-			
		ции с учетом влияния ионосферы			

Содержание разделов дисциплины (модуля), виды работы

	ужание разделов дисциплины (модули), в	Количество часов, выделяемых на виды учебной подготовки по формам обучения							
$N_{\underline{0}}$	Содержание разделов (модулей),	-		· · · · ·					
п/п	тем дисциплины	Очная			Заочная				
		Л	ЛР	ПР	CP	Л	ЛР	ПР	CP
1	Раздел 1. Собственные колебания в линейных и нелинейных системах с одной степенью свободы								
	Тема 1. Предмет теории колебаний. Классификация колебательных процессов, систем, явлений. Понятие о фазовой скорости. Консервативная линейная система: особые точки, фазовые траектории, интегральные кривые. Особая точка - центр.	2		2	4	1		1	10
2	Тема 2. Неконсервативные линейные системы. Метод изоклин. Особые точки фокус, узел, седло. Понятие уравнения Дуффинга. Колебания физического маятника. Фазовая плоскость консервативных нелинейных систем. Неизохронность колебаний нелинейного осциллятора.	2		2	4	1		1	
3	Раздел 2. Элементы теории автоколе- баний Тема 3. Определение и общие свойства автоколебательных систем. Предельные циклы. Генератор со ступенчатой характеристикой.	2		2	4	1		1	10
4	Тема 4. Условие генерации колебаний. Понятие потенциально автоколебательной системы. Понятие томсоновской системы. Метод Ван-дер-Поля.	2		2	4	1		1	
5	Тема 5. Разрывные колебания. Колебания в схеме с неоновой лампой. Примеры разрывных колебаний в радиотехнических системах.	2	2	2	4	1		1	10

6	Раздел 3. Вынужденные колебания в нелинейных системах с одной степенью свободы							
	Тема 6. Метод Ван-дер-Поля для анализа вынужденных колебаний в нелинейных системах.	2	2	4	1		1	
7	Раздел 4. Параметрические колебания в нелинейных системах с одной степенью свободны							
	Тема 7. Параметрические колебания в линейных системах. Физическая картина параметрического возбуждения.	2	2	4				10
8	Раздел 5. Колебания в линейной систе- ме с двумя степенями свободы							
	Тема 8. Определение числа степеней свободы. Парциальная и полная системы. Нормальные колебания, связь и связан-							
	ность парциальных систем.	2	2	4				10
9	Тема 9. Вынужденные колебания в ли-							
	нейной системе с двумя степенями свобо-	2	2	4				10
	ды без трения. Итого за дисциплину:	18	18	36	6	6		60

Перечень практических работ

No	Наименование практических работ	Кол-во часов	№ темы по
п\п	1		Таблице 4
1	2	3	4
1	Построение фазовых траекторий методом интеграль-	2	1, 2
	ных кривых		
2	Анализ колебаний нелинейного осциллятора с сухим	2	1, 2
	трением методом сшивания		
3	Исследование мягкого и жесткого режима генерации	2	3, 4, 5
4	Анализ колебаний в схеме с неоновой лампой	2	3, 4, 5
5	Исследование вынужденных колебаний в нелинейной	2	6
	системе		
6	Линейный анализ параметрических систем. Определе-	2	7
	ние областей параметрического резонанса		
7	Анализ собственных колебаний упруго связанных ма-	4	8, 9
	ятников		
8	Анализ резонансных кривых в линейной системе с	2	8, 9
	двумя степенями свободы без трения		
	Итого:	18	

5. Методические рекомендации

5.1 Методические рекомендации по организации работы обучающихся во время проведения лекционных занятий

- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- Обучающемуся, в ходе лекционных занятий, необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

5.2 Методические указания к выполнению практических работ

- Практические работы сочетают элементы теоретического исследования и практических навыков. Выполняя практические работы, обучающиеся лучше усваивают учебный материал, практически осваивая конкретные решения, происходит соприкосновение теории с практикой, что в целом содействует пониманию сложных вопросов науки и становлению обучающихся как будущих специалистов.
- Выполнение практических работ направлено на:
- обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания для практической деятельности;
 - развитие теоретических, аналитических, проектировочных, знаний и умений;
 - выработку самостоятельности, ответственности и творческой инициативы.
- Практические занятия, как вид учебной деятельности, проводятся в учебных помещениях и лабораториях, при необходимости, с использованием к сети интернет.
- Форма организации обучающихся для проведения практического занятия групповая и индивидуальная определяется преподавателем, исходя из темы, цели, порядка выполнения работы. Оборудование используется в соответствии с инструкциями по эксплуатации.
- Результаты выполнения практической работы оформляются обучающимися в виде отчета, форма и содержание которого определяются требованиями соответствующей работы.

5.3 Проведение занятий в интерактивной форме

- Интерактивное обучение представляет собой способ познания, осуществляемый в формах совместной деятельности обучающихся, т.е. все участники образовательного процесса взаимодействуют друг с другом, совместно решают поставленные проблемы, моделируют ситуации, обмениваются информацией, оценивают действие коллег и свое собственное поведение, погружаются в реальную атмосферу делового сотрудничества по разрешению проблем.
- Интерактивная форма обучения реализуется в виде проблемных лекций, коллективных решениях творческих задач и использовании метода проектов.
- **Проблемная лекция**. На этой лекции новое знание вводится через проблемность вопроса, задачи или ситуации. При этом процесс познания обучающихся в сотрудничестве и диалоге с преподавателем приближается к исследовательской деятельности. Разрешение проблемной ситуации происходит путем организации направления поиска ее решения, выдвижения гипотез и их проверки, решения задач различными способами, нахождения наиболее рационального пути решения и т.д.; анализа полученного результата, обсуждения противоречий или неоднозначности выводов и т.п.
- Коллективные решения творческих задач. Под творческими заданиями понимаются такие учебные задания, которые требуют от обучающихся не простого воспроизводства ин-

формации, а творчества, поскольку задания содержат больший или меньший элемент неизвестности и имеют, как правило, несколько подходов, несколько методов решения.

5.4 Методические рекомендации к самостоятельной работе

- Самостоятельная работа планируемая учебная, учебно-исследовательская, научноисследовательская работа обучающихся, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой обучающихся).
- Самостоятельная работа обучающихся (далее CPO) в ВУЗе является важным видом учебной и научной деятельности обучающегося. СРО играет значительную роль в рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части процесса обучения и процесса самообучения. Поэтому СРО должна стать эффективной и целенаправленной работой обучающихся.
- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие обучающихся в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРО играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы обучающийся приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы обучающихся разнообразны. Они включают в себя:
 - изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, патентной, статистической, периодической и научной информации;
 - подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает обучающихся к научному творчеству, поиску и решению актуальных современных проблем.
- Основной формой самостоятельной работы обучающегося является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и лабораторных занятиях.

5.5 Методические рекомендации по решению тестовых заданий

- Тестовая система предусматривает вопросы/задания, на которые обучающийся должен дать один или несколько вариантов правильного ответа из предложенного списка ответов. При поиске ответа необходимо проявлять внимательность.
- При отсутствии какого-либо одного ответа на вопрос, предусматривающий множественный выбор, весь ответ считается неправильным.
- Ответы правильные выделяются в тесте подчеркиванием или любым другим символом.

Вопросы для самоконтроля

Содержание комплекса заданий по вариантам (не менее 5):

Вариант № 1

- 1. Записать уравнение гармонических колебаний.
- 2. Определить период колебаний $sin(2\pi t + \pi)$.
- 3. Записать выражение для энергии колебаний.

- 1. Найти собственную частоту колебаний математического маятника длиной в 1м.
- 2. Определить период колебаний $sin(3\pi t + \pi)$.
- 3. Определить изменение амплитуды за время 3T, если коэффициент затухания равен 1/(3T).

Задание № 3

- 1. Добротность колебательной системы.
- 2. Определить изменение амплитуды за время 3T, если коэффициент затухания равен 1/(2T).
- 3. Логарифмический коэффициент затухания.

Задание № 4

- 1. Моды двух связанных колебаний с частотами ω_1 и ω_2 .
- 2. Найти амплитуду двух взаимно перпендикулярных колебаний с одинаковой амплитудой A и частотой и разностью фаз $\pi/2$.
- 3. Выражение для мгновенной энергии колебаний.

Задание № 5

- 1. Ленгмюровские колебания.
- 2. Сложить два колебания одинаковой амплитуды с частотами ω_1 =5 и ω_2 =6.
- 3. Выражение для мгновенной энергии колебаний.

Шкала оценивания комплексного задания

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература

- 1. Аврамов К.В. Нелинейная динамика упругих систем. Том 1. Модели, методы, явления [Электронный ресурс]/ Аврамов К.В., Михлин Ю.В.— Электрон. текстовые данные.— Ижевск: Регулярная и хаотическая динамика, Институт компьютерных исследований, 2015.—716 с.— Режим доступа: http://www.iprbookshop.ru/69361.html.— ЭБС «IPRbooks»
- 2. Доев В.С. Теория колебаний в транспортной механике [Электронный ресурс]: учебное пособие/ Доев В.С., Доронин Ф.А., Индейкин А.В.— Электрон. текстовые данные.— М.: Учебно-методический центр по образованию на железнодорожном транспорте, 2011.— 352 с.— Режим доступа: http://www.iprbookshop.ru/16155.html.— ЭБС «IPRbooks»

Дополнительная литература

1. Семенихина Д.В. Компьютерный лабораторный практикум по теории колебаний. Часть1 [Электронный ресурс]: учебное пособие/ Семенихина Д.В.— Электрон. текстовые данные.— Таганрог: Южный федеральный университет, 2015.— 84 с.— Режим доступа: http://www.iprbookshop.ru/68216.html.— ЭБС «IPRbooks»